Minggu, 17 November 2013

Pengukuran hubung singkat trafo

Penentuan Parameter Transformator

Parameter traformator yang terdapat pada model rangkaian (rangkaian ekivalen) Rc,XM,r,Rek dan Xek, dapat ditentukan besarnya dengan dua macam pengukuran (test) yaitu pengukuran beban nol dan pengukuran hubungan singkat.
Pengukuran Beban Nol
Dalam keadaan tanpa beban bila kumparan primer dihubungkandengan sumber V1, seperti telah diterangkan terdahulu maka hanya Io yang mengalir. Dari pengukuran daya yang masuk (P1), arus Io dan tegangan V1 akan diperoleh harga :
                                            Rc  =  V2 / P
                                            Zo = V1 / Io =  j (XM Rc )  / (Rc + jXM)
Dengan demikian, dari pengukuran beban nol dapat diketahui Harga Rc dan XM.

Gambar 1 Rangkaian pengukuran beban nol

Pengukuran  Hubung Singkat
Hubung singkat berarti impedansi ZL deiperkecil menjadi nol, sehingga impedansi Zek = Rek + jXek. Yang membatasi arus. Karena harga Rek dan Xek ini relatif kecil, harus dijaga tegangan yang masuk (Vhs) cukup kecil sehingga arus yang dihasilkan tidak melebihi arus normal. Harga Io akan relatif kecil jika dibandingkan dengan arus nominal,sehingga pada pengukuran ini dapat diabaikan.
Dengan mengukur tegangan Vhs, arus Ihs dan daya Phs akan dapat dihitung parameter:

Gambar 2 Pengukuran hubung singkat

Pengaturan Tegangan
Pengaturan tegangan suatu transformator ialah perubahan tegangan sekunder antara beban nol dengan beban penuh pada suatu faktor kerja tertentu, dengan tegangan primer konstan.

Dengan mengingat model rangkaian yang telah ada (dalam hal ini harga sekunder ditransformasikan ke harga primer) :
Gambar 3 Rangkaian pengganti dilihat dari sisi primer


Dari rangkaian diatas ternyata :
  a.V2 tanpa beban  =  V1
  a.V2  beban penuh  =  harga tegangan nominal (dalam hal ini tegangan nominal primer).

Contoh 1.
Pengukuran hubungan singkat transformator fasa tunggal 15 Kva yang mempunyai perbandingan tegangan 2400 V /240 V. f = 50 c/s menghaasilkan data pengukuran sbb:
Arus hubung singkat         Ihs = 6,25 A
Tegangan yang dipasang   Vhs = 131 V
Daya masuk                    Phs = 214 W

Hitunglah prosentasi pengaturan untuk beban dengan cos Ф =  0.8 terbelakang.
Pemecahan:                                                           
Faktor kerja pada keadaan hubungan singkat :

Sabtu, 16 November 2013

Jenis Hubungan Pada Belitan Transformator Tiga Phasa

Sebenarnya artikel ini adalah artikel dasar yang menarik untuk diulas kembali disini. Karena pembahasan tentang transformator 3 phasa yang umum dipakai diindustri atau sistem distribusi listrik PLN ini, banyak sekali terdapat cabang keilmuannya. Antara lain adalah tentang polaritas, vektor grup, name plate, sistem proteksi dan lainnya, yang apabila dibahas secara utuh akan lumayan memakan banyak waktu dan pikiran.

Khusus kali ini saya hanya akan membahas tentang jenis-jenis hubungan pada belitan transformator 3 phasa, yang terkadang membuat bingung bagi yang baru mempelajarinya.





Pada prinsipnya metode atau cara merangkai belitan kumparan di sisi primer dan sekunder Transformator, umumnya dikenal 3 cara untuk merangkainya, yaitu hubungan bintang, hubungan delta, dan hubungan zig zag.

1. Trafo 3 fasa Hubung Bintang Bintang (Y-Y)

Pada jenis ini ujung ujung pada masing masing terminal dihubungkan secara bintang. Titik netral dijadikan menjadi satu. Hubungan dari tipe ini lebih ekonomis untuk arus nominal yang kecil,pada transformator tegangan tinggi



Gambar 6 Trafo Hubungan Bintang Bintang

2. Trafo Hubung Segitiga-Segitiga (Δ - Δ)

Pada jenis ini ujung fasa dihubungkan dengan ujung netral kumparan lain yang secara keseluruhan akan terbentuk hubungan delta/ segitiga. Hubungan ini umumnya digunakan pada sistem yang menyalurkan arus besar pada tegangan rendah dan yang paling utama saat keberlangsungan dari pelayanan harus dipelihara meskipun salah satu fasa mengalami kegagalan.



Gambar 7 Trafo Hubungan Delta Delta

3. Trafo Hubung Bintang Segi tiga ( Y - Δ)

Pada hubung ini, kumparan pafa sisi primer dirangkai secara bintang (wye) dan sisi sekundernya dirangkai delta. Umumnya digunakan pada trafo untuk jaringan transmisi dimana tegangan nantinya akan diturunkan (Step- Down).

Perbandingan tegangan jala- jala 1/√3 kalinperbandingan lilitan transformator. Tegangan sekunder tertinggal 300 dari tegangan primer.


 
Gambar 8 Trafo Hubungan Bintang Delta

4. Trafo Hubungan Segitiga Bintang (Δ - Y)

Pada hubung ini, sisi primer trafo dirangkai secara delta sedangkan pada sisi sekundernya merupakan rangkaian bintang sehingga pada sisi sekundernya terdapat titik netral. Biasanya digunakan untuk menaikkan tegangan (Step -up) pada awal sistem transmisi tegangan tinggi. Dalam hubungan ini perbandingan tegangan 3 kali perbandingan lilitan transformator dan tegangansekunder mendahului sebesar 30° dari tegangan primernya.


 
Gambar 9 Trafo Hubungan Delta Bintang

5. Hubungan Zig Zag

Kebanyakan transformator distribusi selalu dihubungkan bintang, salah satu syarat yang harus dipenuhi oleh transformator tersebut adalah ketiga fasanya harus diusahakan seimbang. Apabila beban tidak seimbang akan menyebabkan timbulnya tegangan titik bintang yang tidak diinginkan, karena tegangan pada peralatan yang digunakan pemakai akan berbeda-beda.Untuk menghindari terjadinya tegangan titik bintang, diantaranya adalah dengan menghubungkan sisi sekunder dalam hubungan Zigzag.

Dalam hubungan Zig-zag sisi sekunder terdiri atas enam kumparan yang dihubungkan secara khusus (lihat gambar)


 
Gambar 10 Trafo Hubungan Zig Zag

Ujung-ujung dari kumparan sekunder disambungkan sedemikian rupa, supaya arah aliran arus didalam tiap-tiap kumparan menjadi bertentangan. Karena e1 tersambung secara berlawanan dengan gulungan e2, sehingga jumlah vektor dari kedua tegangan itu menjadi :

eZ1 = e1 – e2
eZ2 = e2 – e3
eZ3 = e3 – e1
eZ1 + eZ2 + eZ3 = 0 = 3 eb

Tegangan Titik Bintang
eb = 0
e1 = e/2
nilai tegangan fasa
ez =  e/2 √3
sedangkan tegangan jala jala
Ez = ez √3 = e/2 √3

6. Transformator Tiga Fasa dengan Dua Kumparan

Selain hubungan transforamator seperti telah dijelaskan pada sub-bab sebelumnya, ada transformator tiga fasa dengan dua kumparan. Tiga jenis hubungan yang umum digunakan adalah :
  • V - V atau “ Open Δ “
  • “ Open Y - Open Δ “
  • Hubungan T – T

Hubungan Open Delta

Ini dimungkinkan untuk mentransformasi sistem tegangan 3 fasa hanya menggunakan 2 buah trafo yang terhubung secara open delta. Hubungan open delta identik dengan hubungan delta delta tetapi salah satu trafo tidak dipasang. Hubungan ini jarang digunakan karena load capacity nya hanya 86.6 % dari kapasitas terpasangnya.

Sebagai contoh:


Jika dua buah trafo 50 kVA dihubungkan secara open delta, maka kapasitas terpasang yangseharusnya adalah 2 x 50 = 100 kVA. Namun, kenyatannya hanya dapat menghasilkan 86.6 kVA, sebelum akhirnya trafo mengalami overheat. Dan hubungan open delta ini umumnya digunakan dalam situasi yang darurat.


 
Gambar 11 Trafo Hubungan open Delta / V – V

Kekurangan Hubungan ini adalah :
  • Faktor daya rata-rata, pada V - V beroperasi lebih kecil dari P.f beban, kira kira 86,6% dari faktor daya beban seimbang.
  • Tegangan terminal sekunder cenderung tidak seimbang, apalagi saat beban bertambah.
Gambar 13 Trafo hubungan Open Y open Delta

Hubungan Open Y - Open Δ diperlihatkan padaGambar diatas, ada perbedaan dari hubungan V - V karena penghantar titik tengah pada sisi primer dihubungkan ke netral (ground). Hubungan ini bisa digunakan pada transformator distribusi.

Hubungan Scott atau T - T

Hubungan ini merupakan transformasi tiga fasa ke tiga fasa dengan bantuan dua buah transformator (Kumparan). Satu dari transformator mempunyai “Centre Taps “ pada sisi primer dan sekundernya dan disebut “ Main Transformer“. Transformator yang lainnya mempunyai “0,866 Tap“ dan disebut “Teaser Transformer “. Salah satu ujung dari sisi primer dan sekunder “teaser Transformer” disatukan ke “ Centre Taps” dari “ main transformer “. “ Teaser Transformer” beroperasi hanya 0,866 dari kemampuan tegangannya dan kumparan “ main transformer “ beroperasi pada Cos 30 ° = 0,866 p.f, yang ekuivalen dengan “ main transformer “ bekerja pada 86,6 % dari kemampuan daya semunya



 Gambar 12 Hubungan Scott atau T-T

Kesimpulannya adalah Transformator 3 fasa banyak di aplikasikan untuk menangani listrik dengan daya yang besar. Terdapat berbagai macam hubungan pada trafo tiga fasa yang dalam penggunaannya disesuaikan dengan kebutuhan dan rating tegangan yang akan dipikulnya.

Salah satu hubungan pada trafo tiga fasa yang sering di pakai adalah Hubungan Delta Bintang dan Bintang Delta, kedua jenis hubungan ini biasanya dipakai dalam sistem tenaga listrik khususnya pada bagian transmisi listrik untuk menaikkan tegangan (Δ-Y) dan menurunkan tegangan (Y - Δ ). Untuk suatu keadaan darurat, trafo hubung delta dapat dibuat menjadi open delta namun dengan kapasiatas hanya 86.6 % dari kapasitas terpasangnya.

Konfigurasi Transformator 3 Fasa

Konfigurasi Hubungan Belitan Transformator 3 fasa

Konfigurasi Hubungan Belitan Transformator 3 fasa

 

Pada artikel Transformator di sini, telah dibahas mengenai klasifikasi transformator dan bagian-bagian transformator, dan kemudian diikuti dengan artikel selanjutnya tentang bagian-bagian transformator dan peralatan proteksinya di sini. Rangkaian artikel mengenai transformator dilengkapi pula dengan artikel mengenai perawatan dan pemantauan kondisi transformator saat bekerja di sini.

Sedangkan artikel kali ini akan dibahas secara umum, HANYA mengenai hubungan-hubungan belitan pada transformator 3 fasa. Dan jika anda ingin mengetahui besarnya nilai tegangan, arus dan daya pada masing-masing hubungan, anda dapat membacanya pada artikel di sini.

Transformator 3 fasa pada dasarnya merupakan Transformator 1 fase yang disusun menjadi 3 buah dan mempunyai 2 belitan, yaitu belitan primer dan belitan sekunder. Ada dua metode utama untuk menghubungkan belitan primer yaitu hubungan segitiga dan bintang (delta dan wye). Sedangkan pada belitan sekundernya dapat dihubungkan secara segitiga, bintang dan zig-zag (Delta, Wye dan Zig-zag). Ada juga hubungan dalam bentuk khusus yaitu hubungan open-delta (VV connection)

Konfigurasi Transformator 3 Fasa

Transformator hubungan segitiga-segitiga (delta-delta)


Gambar 1. Hubungan delta-delta (segitiga-segitiga).

Pada gambar 1 baik belitan primer dan sekunder dihubungkan secara delta. Belitan primer terminal 1U, 1V dan 1W dihubungkan dengan suplai tegangan 3 fasa. Sedangkan belitan sekunder terminal 2U, 2V dan 2W disambungkan dengan sisi beban. Pada hubungan Delta (segitiga) tidak ada titik netral, yang diperoleh ketiganya merupakan tegangan line ke line, yaitu L1, L2 dan L3.

Dalam hubungan delta-delta (lihat gambar 1), tegangan pada sisi primer (sisi masukan) dan sisi sekunder (sisi keluaran) adalah dalam satu fasa. Dan pada aplikasinya (lihat gambar 2), jika beban imbang dihubungkan ke saluran 1-2-3, maka hasil arus keluaran adalah sama besarnya. Hal ini menghasilkan arus line imbang dalam saluran masukan A-B-C. Seperti dalam beberapa hubungan delta, bahwa arus line adalah 1,73 kali lebih besar dari masing-masing arus Ip (arus primer) dan Is (arus sekunder) yang mengalir dalam lilitan primer dan sekunder. Power rating untuk transformator 3 fasa adalah 3 kali rating transformator tunggal.


Gambar 2. Diagram Hubungan Delta-Delta Transformator 3 Fasa Dihubungkan Pembangkit Listrik dan Beban (Load)

Transformator hubungan bintang-bintang (wye–wye)


Gambar 3. Hubungan Belitan Bintang-bintang.

Ketika transformator dihubungkan secara bintang-bintang, yang perlu diperhatikan adalah mencegah penyimpangan dari tegangan line ke netral (fase ke netral). Cara untuk mencegah menyimpangan adalah menghubungkan netral untuk primer ke netral sumber yang biasanya dengan cara ditanahkan (ground), seperti ditunjukkan pada
Gambar 4. Cara lain adalah dengan menyediakan setiap transformator dengan lilitan ke tiga, yang disebut lilitan ” tertiary”. Lilitan tertiary untuk tiga transformator dihubungkan secara delta seperti ditunjukkan pada Gambar 5, yang sering menyediakan cabang yang melalui tegangan dimana transformator dipasang. Tidak ada beda fasa antara tegangan line transmisi masukan dan keluaran (primer & sekunder) untuk transformator yang dihubungkan bintang-bintang.


Gambar 4. Hubungan bintang-bintang.


Gambar 5. Hubungan Bintang-bintang dengan belitan tertier.

Transformator hubungan segitiga-bintang (delta-wye)

Pada hubungan segitiga-bintang (delta-wye), tegangan yang melalui setiap lilitan primer adalah sama dengan tegangan line masukan. Tegangan saluran keluaran adalah sama dengan 1,73 kali tegangan sekunder yang melalui setiap transformator. Arus line pada phasa A, B dan C adalah 1,73 kali arus pada lilitan sekunder. Arus line pada fasa 1, 2 dan 3 adalah sama dengan arus pada lilitan sekunder.


Gambar 6. Hubungan Segitiga-Bintang (Delta-wye)

Hubungan delta-bintang menghasilkan beda fasa 30° antara tegangan saluran masukan dan saluran transmisi keluaran. Maka dari itu, tegangan line keluaran E12 adalah 30° mendahului tegangan line masukan EAB, seperti dapat dilihat dari diagram phasor. Jika saluran keluaran memasuki kelompok beban terisolasi, beda fasanya tidak masalah. Tetapi jika saluran dihubungkan paralel dengan saluran masukan dengan sumber lain, beda phasa 30° mungkin akan membuat hubungan paralel tidak memungkinkan, sekalipun jika saluran tegangannya sebaliknya identik.

Keuntungan penting dari hubungan bintang adalah bahwa akan menghasilkan banyak isolasi/penyekatan yang dihasilkan di dalam transformator. Lilitan HV (high Voltage/tegangan tinggi) telah diisolasi/dipisahkan hanya 1/1,73 atau 58% dari tegangan saluran.


Gambar 8. Skema Diagram Hubungan Delta-Bintang dan Diagram Phasor

Transformator hubungan segitiga terbuka (open-delta)

Hubungan open-delta ini untuk merubah tegangan sistem 3 fasa dengan menggunakan hanya 2 transformator yang dihubungkan secara open–delta. Rangkaian open–delta adalah identik dengan rangkaian delta–delta, kecuali bahwa satu transformer tidak ada. Bagaimanapun, hubungan open-delta jarang digunakan sebab hanya mampu dibebani sebesar 86.6% (0,577 x 3 x rating trafo) dari kapasitas transformator yang terpasang.


Gambar 7. Hubungan Open Delta.

Sebagai contoh, jika 2 transformator 50 kVA dihubungkan secara open–delta, kapasitas transformator bank yang terpasang adalah jelas 2x50 = 100kVA. karen terhubung open-delta, maka transformator hanya dapat dibebani 86.6 kVA sebelum transformator mulai menjadi overheat (panas berlebih). Hubungan open–delta utamanya digunakan dalam situasi darurat. Maka, jika 3 transformator dihubungkan secara delta–delta dan salah satunya rusak dan harus diperbaiki/dipindahkan, maka hal ini memungkinkan

Transformator hubungan Zig-zag

Transformator dengan hubungan Zig-zag memiliki ciri khusus, yaitu belitan primer memiliki tiga belitan, belitan sekunder memiliki enam belitan dan biasa digunakan untuk beban yang tidak seimbang (asimetris) - artinya beban antar fasa tidak sama, ada yang lebih besar atau lebih kecil-


Gambar 9. Hubungan Bintang-zigzag (Yzn5)

Gambar 9 menunjukkan belitan primer 20 KV terhubung dalam bintang L1, L2 dan L3 tanpa netral N dan belitan sekunder 400 V merupakan hubungan Zig-zag dimana hubungan dari enam belitan sekunder saling menyilang satu dengan lainnya. Saat beban terhubung dgn phasa U dan N arus sekunder I2 mengalir melalui belitan phasa phasa U dan phasa S. Bentuk vektor tegangan Zig-zag garis tegangan bukan garis lurus,tetapi bergeser dengan sudut 60°.

Konstruksi Transformator

Konstruksi Transformator
Transformator sering juga disebut trafo memiliki konstruksi dan simbol seperti pada gambar 1 berikut ini.
gbr 1Gambar 1 konstruksi dan simbol transformator
Keterangan dari gambar 1 :
NP : jumlah lilitan primer
NS : jumlah lilitan sekunder
VP : tegangan primer
VS : tegangan sekunder
Sebuah trafo terdiri dari kumparan dan inti besi. Biasanya terdapat 2 buah kumparan yaitu kumparan primer dan kumparan sekunder. Kedua kumparan ini tidak berhubungan secara fisik tetapi dihubungkan oleh medan magnet. Untuk meningkatkan induksi magnetik antara 2 kumparan maka ditambahkan inti besi seperti pada gambar 1.
Inti besi pada trafo dibedanya menjadi 2 macam yaitu :
 1.   1. Inti besi tipe Shell (Shell Core Transformator)
2.    2. Inti besi tipe tertutup (Closed Core Transformator)
Kedua jenis inti besi ini dapat dilihat seperti pada gambar 2 berikut ini.
gbr 2Gambar 2 inti trafo
Pada trafo dengan inti besi berbentuk shell, kumparan dikelilingi oleh inti besi. Fluks magnetik pada inti besi tipe shell akan terbelah dua (lihat gambar 2). Sementara kumparan primer dan kumparan sekunder digulung bersamaan. Untuk trafo yang memiliki inti besi tipe tertutup.  Tidak ada pembagian fluk magnetik. Kumparan primer dan kumparan sekunder terpisah dan dihubungkan dengan inti besi.
Inti besi trafo tidak dibuat berbentuk besi tunggal, tetapi dibuat dari pelat besi yang berlapis – lapis. Bentuk lapisan pelat besi pada inti trafo dapat dilihat seperti pada gambar 3 berikut ini.
gbr 3Gambar 3 inti besi berlapis pada trafo
Cara menghubungkan lapisan inti besi juga bermacam-macam. Beberapa cara yang umum digunakan dapat dilihat seperti pada gambar 4 berikut ini.
grb 4Gambar 4 cara menghubungkan lapisan inti besi pada trafo
Mengapa inti besi sebuah trafo harus dibuat berlapis-lapis?.
Untuk menjawab pertanyaan ini , kita terlebih dahulu harus mempelajari rugi-rugi yang terjadi pada inti besi. Rugi – rugi yang terjadi pada inti besi disebut “iron losses “ (rugi-rugi besi). Kerugian pada inti besi terdiri dari :
1. Hysterisis losses (rugi-rugi histerisis)
Kerugian histerisis disebabkan oleh gesekan molekul yang melawan aliran gaya magnet di dalam inti besi. Gesekan molekul dalam inti besi ini menimbulkan panas. Panas yang timbul ini menunjukan kerugian energi, karena sebagian kecil energi listrik tidak dipindahkan , tetapi diubah bentuk menjadi energi panas. Panas yang tinggi juga dapat merusak trafo ,sehingga pada trafo – trafo transmisi daya listrik ukuran besar, harus didinginkan dengan media pendingin. Umumnya digunakan minyak khusus untuk mendinginkan trafo ini.
Sebuah trafo didesain untuk bekerja pada rentang frekuensi tertentu. Menurunnya frekuensi arus listrik dapat menyebabkan meningkatnya rugi-rugi histerisis dan menurunkan kapasitas (VA) trafo.
2. Kerugian karena Eddy current (eddy current losses)
Kerugian karena Eddy current disebabkan oleh aliran sirkulasi arus yang menginduksi logam. Ini disebabkan oleh aliran fluk magnetik disekitar inti besi. Karena inti besi trafo terbuat dari konduktor (umumnya besi lunak), maka arus Eddy yang menginduksi inti besi akan semakin besar. Eddy current dapat menyebabkan kerugian daya pada sebuah trafo karena pada saat terjadi induksi arus listrik pada inti besi, maka sejumlah energi listrik akan diubah menjadi panas. Ini merupakan kerugian.
Untuk mengurangi arus Eddy, maka inti besi trafo dibuat berlapis-lapis, tujuannya untuk memecah induksi arus Eddy yang terbentuk di dalam inti besi. Perbedaan induksi arus Eddy di dalam inti besi tunggal dengan inti besi berlapis dapat dilihat pada gambar 5 berikut ini.
grb 6Gambar 5 Inti besi utuh dan inti besi berlapis
3. Rugi-rugi tembaga (copper losses)
Rugi – rugi yang ketiga adalah rugi-rugi tembaga (copper losses). Rugi-rugi tembag terjadi di kedua kumparan. Kumparan primer atau sekunder dibuat dari gulungan kawat tembaga yang dilapisi oleh isolator tipis yang disebut enamel. Umumnya kumparan dibuat dari gulungan kawat yang cukup panjang. Gulungan kawat yang panjang ini akan meningkatkan hambatan dalam kumparan. Pada saat trafo dialiri arus listrik maka hambatan kumparan ini akan mengubah sejumlah kecil arus listrik menjadi panas yaitu sebesar (i2R). Semakin besar harga R maka semakin besar pula energi panas yang timbul di dalam kumparan. Mutu kawat yang bagus dengan nilai hambatan jenis yang kecil dapat mengurangi rugi – rugi tembaga.
Sebuah trafo yang ideal diasumsikan:
  1. Tidak terjadi rugi-rugi hysterisis
  2. Tidak terjadi induksi arus Eddy
  3. Hambatan dalam kumparan = 0, akibatnya tidak ada rugi-rugi tembaga
Gulungan kawat pada kumparan trafo
Menggulung kawat pada kumparan trafo tidak dilakukan dengan sembarangan, tetapi mengikuti aturan tertentu. Pada trafo fase tunggal, terdapat 2 gulungan kumparan, yaitu gulungan pada kumparan primer yang terhubung langsung ke sumber arus listrik dan gulungan kumparan sekunder yang terhubung langsung ke beban. Perbandingan jumlah gulungan antara kumparan primer dan kumparan sekunder akan menentukan jenis trafo, apakah jenis step-up atau step-down. Bila gulungan kawat pada kumparan primer lebih banyak dibandingkan dengan gulungan kawat pada kumparan sekunder maka trafo akan berfungsi sebagai penurun tegangan atau step-down trafo. Sebaliknya jika gulungan kawat pada kumparan sekunder lebih banyak dari pada gulungan kawat pada kumparan primer, maka trafo akan berfungsi untuk menaikan tegangan atau step-up trafo.
Jenis material kawat yang banyak digunakan untuk membuat kumparan adalah kawat tembaga. Kawat tembaga memiliki konduktivitas listrik yang bagus, tetapi memiliki berat yang besar. Untuk mengurangi berat transformator, sering juga digunakan jenis kawat aluminium. Kawat dengan bahan dasar aluminium memiliki berat jenis yang kecil, tetapi kawat ini tidak tahan terhadap panas dan konduktivitasnya masih lebih kecil dibandingkan dengan tembaga.
Satu hal yang penting dalam menggulung kumparan trafo adalah arah gulungan (orientasi titik). Kumparan primer dan kumparan sekunder dapat digulung searah, tetapi dapat juga digulung berlawanan arah. Hal ini akan berpengaruh ke fasa arus listrik. Apabila kumparan primer dan kumparan sekunder digulung searah, maka fasa arus listrik pada kumparan primer akan sama dengan fasa arus listrik pada kumparan sekunder. Sebaliknya apabila arah gulungan kumparan primer dan sekunder berlawanan arah, maka fasa arus listrik pada kumparan primer akan berlawanan dengan fasa arus listrik pada kumparan sekunder. Untuk jelasnya dapat dilihat pada gambar 6 berikut ini.
gbr 5Gambar 6 gulungan searah dan gulungan berlawanan
Trafo dapat digunakan untuk menaikan atau menurunkan tegangan. Trafo yang digunakan untuk menaikan tegangan disebut trafo step – up sedangkan trafo yang digunakan untuk menurunkan tegangan disebut trafo step-down. Pada trafo step – up tegangan pada sisi sekunder akan lebih tinggi dari tegangan pada sisi primer sebaliknya pada trafo step down tegangan sisi sekunder akan lebih rendah dari tegangan pada sisi primer. Selain trafo step-up dan trafo step –down juga ada trafo impedansi. Trafo impedansi tidak menaikan atau menurunkan tegangan, tetapi digunakan untuk menyesuaikan impedansi suatu rangkaian listrik atau dapat juga digunakan sebagai beban dan filter terhadap medan magnet.
Tegangan pada sisi primer (Vp) dan tegangan sekunder (Vs) ditentukan oleh jumlah lilitan kawat pada kumparan primer dan sekunder. Perbandingan antara lilitan kawat pada kumparan primer (Np) dan lilitan kawat pada kumparan sekunder (Ns) disebut rasio lilitan (n). Sedangkan perbandingan antara tegangan primer (Vp) dengan tegangan sekunder (Vs) disebut rasio tegangan. Besar rasio tegangan dengan rasio lilitan harus sama. Sehingga secara matematis dapat ditulis :
rms 1
Persamaan 1 berlaku bila fluks medan magnet primerdan fluks medan magnet sekunder sama. Rasio lilitan merupakan salah satu faktor penting dalam mendesain dan membuat trafo.
Contoh 1
Sebuah trafo memiliki jumlah lilitan kumparan primer 1500 dan jumlah lilitan pada kumparan sekunder 500 hitunglah berapa rasio lilitan trafo tersebut. Bila pada sisi primer diberi tegangan listrik AC 300 V, hitunglah tegangan pada sisi sekunder bila fluks magnet primer dan sekunder sama.
Jawab
Bila fluks medan magnet pada sisi primer dan sekunder sama, maka berlaku:
rms 2
Cara kerja transfromator
gbr 10Gambar 7 fluks medan magnet pada inti besi
Pada trafo kumparan primer dan kumparan sekunder tidak berhubungan sama sekali, jadi bagaimana daya listrik dapat berpindah dari primer ke sekunder?.
Penghubung antara kumparan primer dan kumparan sekunder adalah fluks medan magnet. Ketika kumparan primer dialiri arus listrik AC, maka pada kumparan primer akan timbul medan magnet disekelilingnya yang disebut mutual induktansi. Mutual induktansi ini bekerja menurut hukum Faraday tentang induksi magnet pada kawat yang dialiri arus listrik. Kuat medan magnet berubah dari nol hingga maksimum yang dinyatakan dengan rms 4
Garis gaya magnet ini keluar dari kumparan primer dan diarahkan oleh inti besi. Fluk magnetik ini berputar di dalam inti besi seperti pada gambar 2. Fluks medan magnet berubah naik dan turun sesuai dengan sumber arus AC yang diberikan.
Besar medan magnet yang diinduksikan ke inti besi ditentukan oleh besarnya arus listrik dan jumlah lilitan kumparan. Semakin besar lilitan kumparan dan semakin besar arus listrik yang mengalir, maka semakin besar juga fluks medan magnet yang diinduksikan ke inti besi.
Ketika medan magnet ini memotong atau masuk ke kumparan sekunder, maka pada kumparan sekunder akan timbul gaya gerak listrik yang disebut tegangan induksi. Besar tegangan induksi ditentukan menurut hukum faraday yaitu :
rms 3
Tegangan induksi ini tidak mengubah frekuensi, sehingga frekuensi pada kumparan primer akan sama dengan frekuensi pada kumparan sekunder.
Bila kira mempunyai sebuah trafo dengan 1 lilitan tunggal pada kumparan primer dan demikian juga dengan kumparan sekunder. Jika tegangan 1 volt diberikan pada kumparan primer dan diasumsikan tidak ada kerugian, arus listrik yang mengalir cukup untuk membangkitkan fluks medan magnet dan menghasilkan tegangan induksi sebesar 1 volt pada 1 lilitan di kumparan sekunder. Ini yang disebut dengan besar tegangan per lilitan.
Jika fluk medan magnet bervariasi sebesar Φ = Φmax sinωt,  maka hubungan antara induksi emf, (E) dan N diberikan :
rms 6
Tegangan maksimum jika Cos(wt) = 1, atau
rms 7
Tegangan rms (rms = root mean square) adalah :
rms 8rms 9
Persamaan ini dikenal dengan nama transformer EMF equation. Untuk kumparan primer maka digunakan NP dan untuk kumparan sekunder digunakan Ns. Trafo tidak dapat bekerja pada arus DC, karena arus DC tidak menimbulkan fluk medan magnet.
Contoh 2
Sebuah trafo mempunyai 480 lilitan pada kumparan primer dan 90 lilitan pada kumparan sekunder. Fluk magnet maksimum sebesar 1,1 Tesla pada tegangan 2000 Volt dengan frekuensi 50 Hz, hitunglah :
  1. Fluks maksimum di inti besi
  2. Luas penampang inti
  3. Induksi emf sekunder
Jawab :
Fluks maksimum di inti besi
rms 10Luas penampang inti
rms 11Induksi emd sekunder
rms 12
Daya Transformator
Daya trafo dinyatakan dalam satuan VA (Volt-Ampere). Untuk ukuran yang lebih besar dinyatakan dalam satuan kVA (kiloVolt-ampere). Pada trafo yang ideal, daya yang diberikan pada kumparan primer akan seluruhnya dipindahkan ke kumparan sekunder tanpa rugi-rugi. Trafo ideal tidak mengubah daya yang diberikan, hanya mengubah tegangan. Trafo hanya dapat menaikkan atau menurunkan tegangan tetapi tidak dapat menaikan daya listrik. Secara matematis, daya sebuah trafo dapat dituliskan :
rms 13
Dimana θp dan θs adalah fase pada primer dan sekunder.

Efisiensi transformator
Sebuah trafo tidak membutuhkan bagian yang bergerak untuk memindahkan energi dari kumparan primer ke kumparan sekunder. Ini berarti tidak ada kerugian karena gesekan atau hambatan udara seperti yang terdapat pada mesin – mesin listrik (contoh motor listrik dan generator). Namun di dalam trafo juga terdapat kerugian yang disebut rugi-rugi tembaga (copper losses) dan rugi-rugi besi (iron losses). Rugi-rugi tembaga terdapat pada kumparan primer dan kumparan sekunder, sedangkan rugi-rugi besi terdapat dalam inti besi. Rugi-rugi ini berupa panas yang dilepaskan akibat terjadinya Eddy current. Tetapi rugi-rugi ini sangat kecil. Efisiensi sebuah trafo dapat dihitung dengan membandingkan daya yang dikeluarkan di kumparan sekunder dengan daya yang diberikan pada kumparan primer.
Sebuah trafo ideal akan memiliki efisiensi sebesar 100 %. Artinya semua daya yang diberikan pada kumparan primer dipindahkan ke kumparan sekunder tanpa ada kerugian. Sebuah trafo yang real memiliki efisiensi di bawah 100% dan pada saat beban penuh (full load) efisiensi trafo berkisar pada harga 94 – 96%. Untuk trafo yang bekerja pada tegangan dan frekuensi yang konstan, efisiensi trafo dapat mencapai 98%. Efisiensi trafo dapat dinyatakan :
rms 14
Transformator dengan banyak kumparan
Pada pembahasan sebelumnya kita hanya melihat trafo dengan 2 kumparan, yaitu 1 kumparan primer dan 1 kumparan sekunder. Tetapi, trafo dapat dibuat dengan banyak kumparan, baik pada kumparan primer maupun pada kumparan sekunder. Trafo dengan banyak kumparan disebut multiple winding transformer.
Prinsip kerja trafo dengan banyak kumparan sama dengan trafo dengan 2 kumparan. Perhitungan tegangan primer, tegangan sekunder, jumlah lilitan primer dan jumlah lilitan sekunder serta arah lilitan sama dengan perhitungan pada trafo dengan 2 kumparan. Hal yang perlu diperhatikan adalah polaritas tegangan pada kumparan, baik kumparan primer maupun kumparan sekunder. Gambar 7 menunjukan skema trafo dengan banyak kumparan.
grb 7Gambar 7 skema trafo dengan banyak kumparan
Gambar 7 menunjukan sebuah trafo yang memiliki 2 kumparan primer dan 3 kumparan sekunder. Kumparan primer trafo dapat dihubungkan secara seri atau paralel. Apabila hendak dihubungkan dengan tegangan yang lebih tinggi kumparan primer dapat dihubungkan seri. Bila kumparan primer dihubungkan secara parelel, maka kumparan primer dapat dialiri arus listrik yang lebih besar lagi. Demikian juga dengan kumparan sekunder. Bila dihubungkan secara seri, maka tegangan yang dihasilkan akan semakin besar, dan bila dihubungkan secara paralel, maka arus yang dihasilkan akan semakin besar.
Proses menghubungkan 2 kumparan atau lebih, harus diperhatikan polaritas masing -masing kumparan. Kumparan yang dihubungkan seri atau paralel harus memiliki polaritas yang sama. Gambar 8 memberikan contoh cara menghubungkan kumparan -kumparan primer dan kumparan – kumparan sekunder.
grb 8Gambar 8 contoh gabungan beberapa kumparan pada trafo
Trafo certer tap (Trafo CT)
Trafo CT adalah trafo step-down yang kumparan sekundernya memiliki titik tengah (center tap). Trafo ini digunakan untuk menciptakan 2 tegangan sekunder yang sama. Trafo CT digunakan untuk membuat power supply bipolar. Gambar 9 menunjukan skema trafo CT.
grb 9Gambar 9 skema trafo CT
Gambar 10 dan gambar 11 menunjukan 2 macam trafo step – down yang banyak digunakan pada saat ini. Gambar 10 menunjukan jenis trafo CT dan gambar 11 menunjukan jenis trafo engkel. Trafo engkel adalah sebutan untuk trafo standar yang memiliki 1 kumparan primer dan 1 kumparan sekunder.
trafo engkel foto
Gambar 10 contoh trafo engkel
foto trafo ct
Gambar 11 contoh trafo CT
Catatan : beberapa gambar diambil dari http://www.electronics-tutorials.ws/index.html